Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: Applications to structural and energetic analysis
نویسندگان
چکیده
Parameters for the zinc ion have been developed in the self-consistent charge density functional tight-binding (SCC-DFTB) framework. The approach was tested against B3LYP calculations for a range of systems, including small molecules that contain the typical coordination environment of zinc in biological systems (cysteine, histidine, glutamic/aspartic acids, and water) and active site models for a number of enzymes such as alcohol dehydrogenase, carbonic anhydrase, and aminopeptidase. The SCC-DFTB approach reproduces structural and energetic properties rather reliably (e.g., total and relative ligand binding energies and deprotonation energies of ligands and barriers for zinc-assisted proton transfers), as compared with B3LYP/6-311+G** or MP2/6-311+G** calculations.
منابع مشابه
Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملModeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70).
The self-consistent charge density-functional tight-binding (SCC-DFTB) method is employed for studying various molecular properties of small fullerenes: C(28), C(60), and C(70). The computed bond distances, vibrational infrared and Raman spectra, vibrational densities of states, and electronic densities of states are compared with experiment (where available) and density-functional theory (DFT)...
متن کاملUsing Density Functional Theory to Model Realistic TiO2 Nanoparticles, Their Photoactivation and Interaction with Water
Computational modeling of titanium dioxide nanoparticles of realistic size is extremely relevant for the direct comparison with experiments but it is also a rather demanding task. We have recently worked on a multistep/scale procedure to obtain global optimized minimum structures for chemically stable spherical titania nanoparticles of increasing size, with diameter from 1.5 nm (~300 atoms) to ...
متن کاملDensity-functional calculations of carbon diffusion in GaAs
Self-consistent-charge density-functional tight-binding ~SCC-DFTB! calculations have been performed to survey the potential-energy surface for a single interstitial carbon atom introduced into GaAs. The results provided a possible model for the diffusion of carbon through GaAs with an activation energy of less than 1 eV. The carbon atom moves via split-interstitial and bond-centered configurati...
متن کاملImplementation of the SCC-DFTB method for hybrid QM/MM simulations within the amber molecular dynamics package.
Self-consistent charge density functional tight-binding (SCC-DFTB) is a semiempirical method based on density functional theory and has in many cases been shown to provide relative energies and geometries comparable in accuracy to full DFT or ab initio MP2 calculations using large basis sets. This article shows an implementation of the SCC-DFTB method as part of the new QM/MM support in the AMB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2003